Página 1 dos resultados de 12517 itens digitais encontrados em 0.021 segundos

Complex networks: the key to systems biology

COSTA, Luciano da Fontoura; RODRIGUES, Francisco A.; CRISTINO, Alexandre S.
Fonte: Sociedade Brasileira de Genética Publicador: Sociedade Brasileira de Genética
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
669.4667%
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.; FAPESP; CNPq

Complex networks analysis of manual and machine translations

AMANCIO, Diego R.; ANTIQUEIRA, Lucas; PARDO, Thiago A. S.; COSTA, Luciano da Fontoura; OLIVEIRA JUNIOR, Osvaldo N ovais de; NUNES, Maria G. V.
Fonte: WORLD SCIENTIFIC PUBL CO PTE LTD Publicador: WORLD SCIENTIFIC PUBL CO PTE LTD
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
664.8948%
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.

Extractive summarization using complex networks and syntactic dependency

Amancio, Diego R.; Nunes, Maria G. V.; Oliveira Junior, Osvaldo Novais de; Costa, Luciano da Fontoura
Fonte: ELSEVIER SCIENCE BV; AMSTERDAM Publicador: ELSEVIER SCIENCE BV; AMSTERDAM
Tipo: Artigo de Revista Científica
ENG
Relevância na Pesquisa
665.5741%
The realization that statistical physics methods can be applied to analyze written texts represented as complex networks has led to several developments in natural language processing, including automatic summarization and evaluation of machine translation. Most importantly, so far only a few metrics of complex networks have been used and therefore there is ample opportunity to enhance the statistics-based methods as new measures of network topology and dynamics are created. In this paper, we employ for the first time the metrics betweenness, vulnerability and diversity to analyze written texts in Brazilian Portuguese. Using strategies based on diversity metrics, a better performance in automatic summarization is achieved in comparison to previous work employing complex networks. With an optimized method the Rouge score (an automatic evaluation method used in summarization) was 0.5089, which is the best value ever achieved for an extractive summarizer with statistical methods based on complex networks for Brazilian Portuguese. Furthermore, the diversity metric can detect keywords with high precision, which is why we believe it is suitable to produce good summaries. It is also shown that incorporating linguistic knowledge through a syntactic parser does enhance the performance of the automatic summarizers...

Dinâmica de partículas e aprendizado competitivo para detecção de comunidades em redes complexas; Particle dynamics and competitive learning for community detection in complex networks

Alonso, Ronaldo Luiz
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 19/05/2008 PT
Relevância na Pesquisa
663.7004%
O estudo de redes complexas tem alavancado um tremendo interesse em anos recentes. Uma das características salientes de redes complexas é a presença de comunidades, ou grupos de nós densamente conectados. A detecção de comunidades pode não apenas ajudar a entender as estruturas topológicas de redes complexas, mas também pode fornecer novas técnicas para aplicações reais, como mineração de dados. Neste trabalho, propomos um novo modelo para detecção de comunidades em redes complexas, no qual várias partículas caminham na rede e competem umas com as outras para marcar seu próprio território e rejeitar partículas intrusas. O processo atinge o equilíbrio dinâmico quando cada comunidade tem apenas uma partícula. Nossa abordagem não apenas pode obter bons resultados na detecção de comunidades, como também apresenta diversas características interessantes: 1) O processo de competição de partículas é similar a muitos processos naturais e sociais, tais como competição de animais por recursos, exploração territorial por humanos (animais), campanhas eleitorais, etc.. Portanto, o modelo proposto neste trabalho pode ser útil para simular a dinâmica evolutiva de tais processos. 2) Neste modelo, nós introduzimos uma regra para controlar o nível de aleatoriedade do passeio da partícula. Descobrimos que uma pequena porção de aleatoriedade pode aumentar bastante a taxa de detecção de comunidades. Nossa descoberta é análoga ao notável fenômeno chamado ressonância estocástica onde o desempenho de um sistema determinístico não-linear pode ser bastante melhorado através da introdução de um certo nível de ruído. É interessante notar que tal fenômeno é observado em uma situação diferente aos sistemas clássicos de ressonância estocástica. 3) Nossa descoberta indica que a aleatoriedade tem um papel importante em sistemas evolutivos. Ela serve para automaticamente escapar de armadilhas não desejáveis e explorar novos espaços...

Redes complexas: novas metodologias e modelagem de aquisição de conhecimento; Complex Networks: New methodologies and knowledge acquisition modeling

Silva, Filipi Nascimento
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 17/12/2009 PT
Relevância na Pesquisa
669.06234%
Estudos em redes complexas têm ganhado cada vez mais atenção devido ao seu potencial de representação simples de modelos complexos em diversas áreas de conhecimento. A obtenção de modelos quantitativos que representem fenômenos observados da natureza, assim como o desenvolvimento de metodologias de caracterização de redes complexas, tornaram-se essenciais para a compreensão e desenvolvimento de pesquisas com essas estruturas. Este trabalho tem como objetivo desenvolver e estudar alguns métodos recentes, usados para a caracterização de redes complexas, explorando-os no contexto da modelagem de conhecimento. Para isso, duas redes complexas foram geradas, uma rede de colaboração de pesquisadores da USP e outra obtida a partir do banco de dados de artigos da Wikipédia, considerando apenas aqueles da categoria de teoremas matemáticos. As medidas concêntricas, que foram recentemente formalizadas, são exploradas e aplicadas às redes descritas, assim como para diversos modelos teóricos, fornecendo informações muito relevantes sobre a topologia dessas redes. Resultados ainda mais interessantes são obtidos pela caracterização dos vértices da rede de colaboração, que revelam padrões de interdisciplinaridade entre as diferentes áreas do conhecimento. Um modelo de aquisição de conhecimento também foi proposto...

Modelando a atenção seletiva e a saliência visual através de redes complexas; Modeling the selective attention and visual saliency using complex networks

Rigo, Gustavo Vrech
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 22/07/2010 PT
Relevância na Pesquisa
664.3812%
A atenção seletiva é uma característica central do sistema visual humano, uma vez que todo o cérebro é otimizado de modo a perceber as informações ao seu redor da forma mais rápida possível. Porém, em geral os trabalhos nesta área apenas verificam quais são as regiões de maior freqüência da atenção seletiva, dando pouca importância para a sua mecânica. A presente dissertação propõe um modelo que represente a atenção seletiva como uma rede complexa, combinando naturalmente as áreas de redes complexas, cadeias de Markov, análise de imagens, atenção seletiva e saliência visual num modelo biologicamente plausível para simular a atenção seletiva. O modelo propõe que pontos importantes da imagem, pontos salientes, sejam caracterizados como vértices da rede complexa, e que as arestas sejam distribuídas de acordo com a probabilidade da mudança de atenção entre dois vértices. Desta forma, a mecânica da atenção seletiva seria simulada pela mecânica da rede complexa correspondente. Foram estudadas imagens em níveis de cinza, sendo estas correspondentes à cena observada. A probabilidade de mudança entre duas regiões, as arestas da rede, foram definidas através de diversos métodos de composição da saliência visual...

Aprendizado de máquina em redes complexas; Machine learning in complex networks

Breve, Fabricio Aparecido
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 23/08/2010 PT
Relevância na Pesquisa
667.3546%
Redes complexas é um campo de pesquisa científica recente e bastante ativo que estuda redes de larga escala com estruturas topológicas não triviais, tais como redes de computadores, redes de telecomunicações, redes de transporte, redes sociais e redes biológicas. Muitas destas redes são naturalmente divididas em comunidades ou módulos e, portanto, descobrir a estrutura dessas comunidades é um dos principais problemas abordados no estudo de redes complexas. Tal problema está relacionado com o campo de aprendizado de máquina, que tem como interesse projetar e desenvolver algoritmos e técnicas que permitem aos computadores aprender, ou melhorar seu desempenho através da experiência. Alguns dos problemas identificados nas técnicas tradicionais de aprendizado incluem: dificuldades em identificar formas irregulares no espaço de atributos; descobrir estruturas sobrepostas de grupos ou classes, que ocorre quando elementos pertencem a mais de um grupo ou classe; e a alta complexidade computacional de alguns modelos, que impedem sua aplicação em bases de dados maiores. Neste trabalho tratamos tais problemas através do desenvolvimento de novos modelos de aprendizado de máquina utilizando redes complexas e dinâmica espaço-temporal...

Análise de robustez em redes complexas; Analysis of Robustness in Complex Networks

Barbieri, André Luiz
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 14/02/2011 PT
Relevância na Pesquisa
667.8855%
A teoria das redes complexas é uma área relativamente nova da Ciência, inspirada por dados empíricos tais como os obtidos de interações biológicas e sociais. Esta área apresenta uma natureza altamente interdisciplinar, de modo que tem unido cientistas de diferentes áreas, tais como matemática, física, biologia, ciência computação, sociologia, epidemiologia e muitas outras. Um dos problemas fundamentais nessa área é entender como a organização de redes complexas influencia em processos dinâmicos, como sincronização, propagação de epidemias e falhas e ataques. Nessa dissertação, é apresentada uma análise da relação entre estrutura e robustez de redes complexas através da remoção de vértices. Para a aplicação deste estudo, foram adquiridas bases de dados de interações de proteínas de quatro espécies, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster e Homo sapiens, como também mapas das malhas de rodovias de sete países, Brasil, Portugal, Polônia, Romênia, Austrália, Índia e África do Sul. Foi estudada a robustez dessas redes através de simulação de falhas e ataques, segundo uma dinâmica de remoção de vértices. Nesse caso, a variação na estrutura das redes devido a essa remoção foi quantificada pelas medidas do tamanho da maior componente conectado...

Análise de dados utilizando a medida de tempo de consenso em redes complexas; Data anlysis using the consensus time measure for complex networks

Lopez, Jean Pierre Huertas
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 30/03/2011 PT
Relevância na Pesquisa
667.7494%
Redes são representações poderosas para muitos sistemas complexos, onde vértices representam elementos do sistema e arestas representam conexões entre eles. Redes Complexas podem ser definidas como grafos de grande escala que possuem distribuição não trivial de conexões. Um tópico importante em redes complexas é a detecção de comunidades. Embora a detecção de comunidades tenha revelado bons resultados na análise de agrupamento de dados com grupos de diversos formatos, existem ainda algumas dificuldades na representação em rede de um conjunto de dados. Outro tópico recente é a caracterização de simplicidade em redes complexas. Existem poucos trabalhos nessa área, no entanto, o tema tem muita relevância, pois permite analisar a simplicidade da estrutura de conexões de uma região de vértices, ou de toda a rede. Além disso, mediante a análise de simplicidade de redes dinâmicas no tempo, é possível conhecer como vem se comportando a evolução da rede em termos de simplicidade. Considerando a rede como um sistema dinâmico de agentes acoplados, foi proposto neste trabalho uma medida de distância baseada no tempo de consenso na presença de um líder em uma rede acoplada. Utilizando essa medida de distância...

Efeito da amostragem nas propriedades topológicas de redes complexas; Sampling effect on the topological properties of complex networks

Boas, Paulino Ribeiro Villas
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 19/06/2008 PT
Relevância na Pesquisa
669.683%
Muitos sistemas complexos naturais ou construídos pelos seres humanos podem ser representados por redes complexas, uma teoria que une o estudo de grafos com a mecânica estatística. Esse tipo de representação, porém, pode ser comprometido pela maneira como os dados são obtidos. Em geral, os dados utilizados para representar tais sistemas nem sempre são precisos ou completos e correspondem a apenas amostras pequenas de redes maiores, como é o caso da teia mundial (WWW). Dessa forma, mesmo que as amostras sejam grandes, as suas propriedades são diretamente afetadas pela maneira como elas são obtidas e podem não corresponder com as de suas respectivas redes originais. Por exemplo, a amostragem mais utilizada para captura de roteadores da Internet, se empregada em redes aleatórias, tende a obter redes sem escala como resultado. Em contrapartida, amostras de redes sem escala não têm garantia de preservar essa estrutura. Por causa desses e outros problemas que possam ocorrer na amostragem das redes, é muito importante avaliar a variação das propriedades das redes a ruídos (para saber quais variam menos, sendo, portanto, mais adequadas para caracterizar redes com problemas de amostragem) e os efeitos da amostragem na caracterização...

Identificação de domínios em proteínas com redes complexas; Protein domain identification with complex networks.

Mostaço-Guidolin, Luiz Carlos Büttner
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 20/01/2011 PT
Relevância na Pesquisa
666.5011%
A utilização de redes complexas para a descriçãoi de diversos sistemas naturais e artificias,compreendidos nas mais diversas áreas do conhecimento humano, tem se mostrado uma abordagem poderosa para a redução da complexidade inerente a tais sistemas. Em muitos casos, tal complexidade resulta do número de componentes envolvidos e de suas intrincadas relações. Uma forma de reduzir a complexidade associada a tais sistemas, consiste em identificar e agrupar componentes que possuam características similares. Sendo assim, desenvolvemos nesta tese métodos de identificação de comunidades em redes complexas. Tais métodos se baseiam na ideia de que comunidades surgem quando grupos de vértices possuem um número mais elevado de conexões entre os vértices do mesmo grupo do que com vértices externos à este grupo. Além disso, utilizamos a função modularidade como função objetivo e como forma de avaliação e comparação dos resultados obtidos nesta tese com resultados previamente reportados na literatura. Uma vez estabelecido um método de identificação de comunidades, utilizamos a abordagem de redes complexas para a determinação de domínios estruturais de proteínas. Para tal, criamos redes de contato entre os aminoácidos de uma proteí?na buscando representar apenas as ligações relevantes do ponto de vista topológico. Por meio destas representações...

Mineração de dados em redes complexas: estrutura e dinâmica; Data mining in complex networks: structure and dynamics

Arruda, Guilherme Ferraz de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 02/04/2013 PT
Relevância na Pesquisa
666.1069%
A teoria das redes complexas é uma área altamente interdisciplinar que oferece recursos para o estudo dos mais variados tipos de sistemas complexos, desde o cérebro até a sociedade. Muitos problemas da natureza podem ser modelados como redes, tais como: as interações protéicas, organizações sociais, o mercado financeiro, a Internet e a World Wide Web. A organização de todos esses sistemas complexos pode ser representada por grafos, isto é, vértices conectados por arestas. Tais topologias têm uma influencia fundamental sobre muitos processos dinâmicos. Por exemplo, roteadores altamente conectados são fundamentais para manter o tráfego na Internet, enquanto pessoas que possuem um grande número de contatos sociais podem contaminar um grande número de outros indivíduos. Ao mesmo tempo, estudos têm mostrado que a estrutura do cérebro esta relacionada com doenças neurológicas, como a epilepsia, que está ligada a fenômenos de sincronização. Nesse trabalho, apresentamos como técnicas de mineração de dados podem ser usadas para estudar a relação entre topologias de redes complexas e processos dinâmicos. Tal estudo será realizado com a simulação de fenômenos de sincronização, falhas, ataques e propagação de epidemias. A estrutura das redes será caracterizada através de métodos de mineração de dados...

Refinamento multinível em redes complexas baseado em similaridade de vizinhança; Multilevel refinement in complex networks based on neighborhood similarity

Valejo, Alan Demetrius Baria
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 11/11/2014 PT
Relevância na Pesquisa
665.7772%
No contexto de Redes Complexas, particularmente das redes sociais, grupos de objetos densamente conectados entre si, esparsamente conectados a outros grupos, são denominados de comunidades. Detecção dessas comunidades tornou-se um campo de crescente interesse científico e possui inúmeras aplicações práticas. Nesse contexto, surgiram várias pesquisas sobre estratégias multinível para particionar redes com elevada quantidade de vértices e arestas. O objetivo dessas estratégias é diminuir o custo do algoritmo de particionamento aplicando-o sobre uma versão reduzida da rede original. Uma possibilidade dessa estratégia, ainda pouco explorada, é utilizar heurísticas de refinamento local para melhorar a solução final. A maioria das abordagens de refinamento exploram propriedades gerais de redes complexas, tais como corte mínimo ou modularidade, porém, não exploram propriedades inerentes de domínios específicos. Por exemplo, redes sociais são caracterizadas por elevado coeficiente de agrupamento e assortatividade significativa, consequentemente, maximizar tais características pode conduzir a uma boa solução e uma estrutura de comunidades bem definida. Motivado por essa lacuna, neste trabalho é proposto um novo algoritmo de refinamento...

Redes complexas em presença de falhas induzidas; Complex networks in presence of induced failures

Vanessa Helena Pereira
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 17/12/2010 PT
Relevância na Pesquisa
666.6342%
A necessidade da operação intermitente de redes complexas leva ao estudo das falhas nas redes de topologia livre de escala (Scale-Free) de Barabási-Albert. Neste trabalho introduzem-se as teorias fundamentais ao estudo das redes complexas, além da revisão de vários trabalhos científicos relacionados às falhas e aos mecanismos de contenção destas. Utilizando o software Attacker-Defender, são construídas várias redes complexas Scale-Free de diferentes tamanhos, representadas por grafos. Estas redes são utilizadas para simular dois tipos de falhas mais frequentes: falhas aleatórias e falhas direcionadas aos hubs (nós com maior número de arestas incidentes) em duas etapas. Na primeira etapa, em dez tamanhos de redes são testadas quatro situações distintas. Na segunda etapa, em sete tamanhos de redes, são testadas dez diferentes vulnerabilidades. A partir da análise dos resultados da primeira etapa, observa-se qual dos quatro cenários analisados é o mais vantajoso para contenção de falhas nas redes. A análise da segunda etapa permite definir a descrição matemática do comportamento dos nós sobreviventes e atingidos no pós-falha, em cada uma das redes, para cada tipo de falha, através de métodos e funções específicas encontradas.; The need for the intermittent operation of complex networks leads to the study of failures in these networks topology called Scale-Free...

A study on the structure and dynamics of complex networks; Estudo sobre a estrutura e dinâmica de redes complexas

João Pinheiro Neto
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 15/12/2014 PT
Relevância na Pesquisa
664.9213%
Nesta dissertação de mestrado estudamos a dinâmica e estrutura de redes complexas. Começamos com uma revisão da literatura de redes complexas, apresentando as métricas de rede e modelos de conectividade mais comuns. Estudamos então em detalhe a dinâmica do modelo das Random Threshold Networks (RTN). Desenvolvemos uma nova aproximação de campo médio para a dinâmica de RTNs, consideravelmente mais simples que aproximações anteriores. Esta nova aproximação é útil de um ponto de vista prático, pois permite a geração de RTNs onde a atividade média da rede é controlável. Fazemos então uma revisão da literatura de redes adaptativas, apresentando alguns modelos de redes adaptativas com características interessantes. Por fim, desenvolvemos dois modelos de redes adaptativas inspirados pela evolução da estrutura neuronal no cérebro. O primeiro modelo utiliza regras simples e uma evolução baseada na remoção de links para controlar a atividade sobre a rede. A inspiração é a remoção de neurônios e conexões neuronais após a infância. Este modelo também consegue controlar a atividade de grupos individuais dentro de uma mesma rede. Exploramos uma variante deste modelo em um espaço bidimensional, onde conseguimos gerar redes modulares e small-world. O segundo modelo utiliza inputs externos para controlar a evolução da topologia da rede. A inspiração neste caso é o desenvolvimento das conexões neuronais durante a infância...

Complex networks and data mining: toward a new perspective for the understanding of complex systems

Zanin, Massimiliano
Fonte: Universidade Nova de Lisboa Publicador: Universidade Nova de Lisboa
Tipo: Tese de Doutorado
Publicado em /12/2014 ENG
Relevância na Pesquisa
663.6906%
Complex systems, i.e. systems composed of a large set of elements interacting in a non-linear way, are constantly found all around us. In the last decades, different approaches have been proposed toward their understanding, one of the most interesting being the Complex Network perspective. This legacy of the 18th century mathematical concepts proposed by Leonhard Euler is still current, and more and more relevant in real-world problems. In recent years, it has been demonstrated that network-based representations can yield relevant knowledge about complex systems. In spite of that, several problems have been detected, mainly related to the degree of subjectivity involved in the creation and evaluation of such network structures. In this Thesis, we propose addressing these problems by means of different data mining techniques, thus obtaining a novel hybrid approximation intermingling complex networks and data mining. Results indicate that such techniques can be effectively used to i) enable the creation of novel network representations, ii) reduce the dimensionality of analyzed systems by pre-selecting the most important elements, iii) describe complex networks, and iv) assist in the analysis of different network topologies. The soundness of such approach is validated through different validation cases drawn from actual biomedical problems...

Complex networks: the key to systems biology

Costa,Luciano da F.; Rodrigues,Francisco A.; Cristino,Alexandre S.
Fonte: Sociedade Brasileira de Genética Publicador: Sociedade Brasileira de Genética
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/01/2008 EN
Relevância na Pesquisa
669.4667%
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.

Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks

Medland, Michael; Medland, Michael
Fonte: Brock University Publicador: Brock University
Tipo: Electronic Thesis or Dissertation
ENG
Relevância na Pesquisa
668.2822%
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models...

Automatic Inference of Graph Models for Complex Networks with Genetic Programming

Bailey, Alexander
Fonte: Brock University Publicador: Brock University
Tipo: Electronic Thesis or Dissertation
ENG
Relevância na Pesquisa
663.9928%
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data...

A Simulation Study for Emergency/Disaster Management by Applying Complex Networks Theory

Jin,Li; Jiong,Wang; Yang,Dai; Huaping,Wu; Wei,Dong
Fonte: UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnológico Publicador: UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnológico
Tipo: Artigo de Revista Científica Formato: text/html
Publicado em 01/01/2014 EN
Relevância na Pesquisa
664.8948%
Earthquakes, hurricanes, flooding and terrorist attacks pose a severe threat to our society. What's more, when such a disaster happens, it can spread in a wide range with ubiquitous presence of a large-scale networked system. Therefore, the emergency/disaster management faces new challenges that the decision-makers have extra difficulties in perceiving the disaster dynamic spreading processes under this networked environment. This study tries to use the complex networks theory to tackle this complexity and the result shows the theory is a promising approach to support disaster/emergency management by focusing on simulation experiments of small world networks and scale free networks. The theory can be used to capture and describe the evolution mechanism, evolution discipline and overall behavior of a networked system. In particular, the complex networks theory is very strong at analyzing the complexity and dynamical changes of a networked system, which can improve the situation awareness after a disaster has occurred and help perceive its dynamic process, which is very important for high-quality decision making. In addition, this study also shows the use of the complex networks theory can build a visualized process to track the dynamic spreading of a disaster in a networked system.