Página 1 dos resultados de 15089 itens digitais encontrados em 0.021 segundos
Resultados filtrados por Publicador: Universidade Duke

Computational Systems Biology of Saccharomyces cerevisiae Cell Growth and Division

Mayhew, Michael Benjamin
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação
Publicado em //2014
Relevância na Pesquisa
657.3406%

Cell division and growth are complex processes fundamental to all living organisms. In the budding yeast, Saccharomyces cerevisiae, these two processes are known to be coordinated with one another as a cell's mass must roughly double before division. Moreover, cell-cycle progression is dependent on cell size with smaller cells at birth generally taking more time in the cell cycle. This dependence is a signature of size control. Systems biology is an emerging field that emphasizes connections or dependencies between biological entities and processes over the characteristics of individual entities. Statistical models provide a quantitative framework for describing and analyzing these dependencies. In this dissertation, I take a statistical systems biology approach to study cell division and growth and the dependencies within and between these two processes, drawing on observations from richly informative microscope images and time-lapse movies. I review the current state of knowledge on these processes, highlighting key results and open questions from the biological literature. I then discuss my development of machine learning and statistical approaches to extract cell-cycle information from microscope images and to better characterize the cell-cycle progression of populations of cells. In addition...

Network Dynamics and Systems Biology

Norrell, Johannes Adrie
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação Formato: 2947765 bytes; application/pdf
Publicado em //2009 EN_US
Relevância na Pesquisa
662.6559%

The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior.

In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations...